Ziawasch Abedjan, Ulf Leser, Heiko Müller, Felix Naumann, Jana Bauckmann

Covering or Complete?

Discovering conditional inclusion dependencies



ISBN: 978-3-86956-212-4
34 Seiten
Erscheinungsjahr 2013

Reihe: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam , 62

0,00 

Datenabhängigkeiten (wie zum Beispiel Integritätsbedingungen), werden verwendet, um die Qualität eines Datenbankschemas zu erhöhen, um Anfragen zu optimieren und um Konsistenz in einer Datenbank sicherzustellen. In den letzten Jahren wurden bedingte Abhängigkeiten (conditional dependencies) vorgestellt, die die Qualität von Daten analysieren und verbessern sollen. Eine bedingte Abhängigkeit ist eine Abhängigkeit mit begrenztem Gültigkeitsbereich, der über Bedingungen auf einem oder mehreren Attributen definiert wird. In diesem Bericht betrachten wir bedingte Inklusionsabhängigkeiten (conditional inclusion dependencies; CINDs). Wir generalisieren die Definition von CINDs anhand der Unterscheidung von überdeckenden (covering) und vollständigen (completeness) Bedingungen. Wir stellen einen Anwendungsfall für solche CINDs vor, der den Nutzen von CINDs bei der Lösung komplexer Datenqualitätsprobleme aufzeigt. Darüber hinaus definieren wir Qualitätsmaße für Bedingungen basierend auf Sensitivität und Genauigkeit. Wir stellen effiziente Algorithmen vor, die überdeckende und vollständige Bedingungen innerhalb vorgegebener Schwellwerte finden. Unsere Algorithmen wählen nicht nur die Werte der Bedingungen, sondern finden auch die Bedingungsattribute automatisch. Abschließend zeigen wir, dass unser Ansatz effizient sinnvolle und hilfreiche Ergebnisse für den vorgestellten Anwendungsfall liefert.

Datenabhängigkeiten (wie zum Beispiel Integritätsbedingungen), werden verwendet, um die Qualität eines Datenbankschemas zu erhöhen, um Anfragen zu optimieren und um Konsistenz in einer Datenbank sicherzustellen. In den letzten Jahren wurden bedingte Abhängigkeiten (conditional dependencies) vorgestellt, die die Qualität von Daten analysieren und verbessern sollen. Eine bedingte Abhängigkeit ist eine Abhängigkeit mit begrenztem Gültigkeitsbereich, der über Bedingungen auf einem oder mehreren Attributen definiert wird. In diesem Bericht betrachten wir bedingte Inklusionsabhängigkeiten (conditional inclusion dependencies; CINDs). Wir generalisieren die Definition von CINDs anhand der Unterscheidung von überdeckenden (covering) und vollständigen (completeness) Bedingungen. Wir stellen einen Anwendungsfall für solche CINDs vor, der den Nutzen von CINDs bei der Lösung komplexer Datenqualitätsprobleme aufzeigt. Darüber hinaus definieren wir Qualitätsmaße für Bedingungen basierend auf Sensitivität und Genauigkeit. Wir stellen effiziente Algorithmen vor, die überdeckende und vollständige Bedingungen innerhalb vorgegebener Schwellwerte finden. Unsere Algorithmen wählen nicht nur die Werte der Bedingungen, sondern finden auch die Bedingungsattribute automatisch. Abschließend zeigen wir, dass unser Ansatz effizient sinnvolle und hilfreiche Ergebnisse für den vorgestellten Anwendungsfall liefert.