..

Christoph Böhm, Felix Naumann, Dustin Lange

Extracting structured information from Wikipedia articles to populate infoboxes

ISBN: 978-3-86956-081-6
27 Seiten
Erscheinungsjahr 2010

Reihe: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam , 38

0,00 

Ungefähr jeder dritte Wikipedia-Artikel enthält eine Infobox – eine Tabelle, die wichtige Fakten über das beschriebene Thema in Attribut-Wert-Form darstellt. Das Schema einer Infobox, d.h. die Attribute, die für ein Konzept verwendet werden können, wird durch ein Infobox-Template definiert. Häufig geben Autoren nicht für alle Template-Attribute Werte an, wodurch unvollständige Infoboxen entstehen. Mit iPopulator stellen wir ein System vor, welches automatisch Infoboxen von Wikipedia-Artikeln durch Extrahieren von Attributwerten aus dem Artikeltext befüllt. Im Unterschied zu früheren Arbeiten erkennt iPopulator die Struktur von Attributwerten und nutzt diese aus, um die einzelnen Bestandteile von Attributwerten unabhängig voneinander zu extrahieren. Wir haben iPopulator auf der gesamten Menge der Infobox-Templates getestet und analysieren detailliert die Effektivität. Wir erreichen beispielsweise für die Extraktion einen durchschnittlichen Precision-Wert von 91% für 1.727 verschiedene Infobox-Template-Attribute.

Ungefähr jeder dritte Wikipedia-Artikel enthält eine Infobox – eine Tabelle, die wichtige Fakten über das beschriebene Thema in Attribut-Wert-Form darstellt. Das Schema einer Infobox, d.h. die Attribute, die für ein Konzept verwendet werden können, wird durch ein Infobox-Template definiert. Häufig geben Autoren nicht für alle Template-Attribute Werte an, wodurch unvollständige Infoboxen entstehen. Mit iPopulator stellen wir ein System vor, welches automatisch Infoboxen von Wikipedia-Artikeln durch Extrahieren von Attributwerten aus dem Artikeltext befüllt. Im Unterschied zu früheren Arbeiten erkennt iPopulator die Struktur von Attributwerten und nutzt diese aus, um die einzelnen Bestandteile von Attributwerten unabhängig voneinander zu extrahieren. Wir haben iPopulator auf der gesamten Menge der Infobox-Templates getestet und analysieren detailliert die Effektivität. Wir erreichen beispielsweise für die Extraktion einen durchschnittlichen Precision-Wert von 91% für 1.727 verschiedene Infobox-Template-Attribute.