• Entschuldigung, dieses Produkt kann nicht gekauft werden.


k-Inductive Invariant Checking for Graph Transformation Systems

ISBN: 978-3-86956-406-7
45 Seiten
Erscheinungsjahr 2017

Reihe: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam , 119

0,00 

Während Graphtransformationssysteme einerseits einen ausdrucksstarken Formalismus bereitstellen, existieren andererseits nur eingeschränkte Möglichkeiten für die automatische Analyse. Dies gilt insbesondere für die Analyse von Systemen mit einer Vielzahl an initialen Graphen oder mit großen oder unendlichen Zustandsräumen. Ein möglicher Ansatz, um diese Einschränkungen zu umgehen, sind induktive Invarianten. Allerdings erfordert die Verifkation induktiver Invarianten oft erweitertes Wissen über das zu verifizierende System; weiterhin muss diese Verifikationstechnik mit den spezifischen Problemen der Lokalität und des Mangels an Kontextwissen umgehen.
Dieser Bericht betrachtet k-induktive Invarianten – eine Verallgemeinerung induktiver Invarienten – für Graphtransformationssysteme als einen möglichen Ansatz, um diese Probleme anzugehen. Zusätzliches Kontextwissen, das durch die Analyse mehrerer (k) Schritte gewonnen werden kann, macht den entscheidenden Unterschied zu induktiven Invarianten aus und genügt oft, um die gewünschten Invarianten ohne die iterative Entwicklung zusätzlicher Eigenschaften zu verifizieren.
Um unendliche Systeme in endlicher Zeit zu analysieren, führen wir eine symbolische Kodierung von Transformationssequenzen ein, die auf verschachtelten Anwendungsbedingungen basiert. Unser zentraler Beitrag ist dann ein formaler Ansatz und Algorithmus zur Verifikation von Graphbedingungen als k-induktive Invarianten. Wir führen einen formalen Beweis, um die Korrektheit unseres Verfahrens nachzuweisen, und demonstrieren die Anwendbarkeit des Verfahrens an mehreren Beispielen, die mit einer prototypischen Implementierung verifiziert wurden.

Während Graphtransformationssysteme einerseits einen ausdrucksstarken Formalismus bereitstellen, existieren andererseits nur eingeschränkte Möglichkeiten für die automatische Analyse. Dies gilt insbesondere für die Analyse von Systemen mit einer Vielzahl an initialen Graphen oder mit großen oder unendlichen Zustandsräumen. Ein möglicher Ansatz, um diese Einschränkungen zu umgehen, sind induktive Invarianten. Allerdings erfordert die Verifkation induktiver Invarianten oft erweitertes Wissen über das zu verifizierende System; weiterhin muss diese Verifikationstechnik mit den spezifischen Problemen der Lokalität und des Mangels an Kontextwissen umgehen.
Dieser Bericht betrachtet k-induktive Invarianten – eine Verallgemeinerung induktiver Invarienten – für Graphtransformationssysteme als einen möglichen Ansatz, um diese Probleme anzugehen. Zusätzliches Kontextwissen, das durch die Analyse mehrerer (k) Schritte gewonnen werden kann, macht den entscheidenden Unterschied zu induktiven Invarianten aus und genügt oft, um die gewünschten Invarianten ohne die iterative Entwicklung zusätzlicher Eigenschaften zu verifizieren.
Um unendliche Systeme in endlicher Zeit zu analysieren, führen wir eine symbolische Kodierung von Transformationssequenzen ein, die auf verschachtelten Anwendungsbedingungen basiert. Unser zentraler Beitrag ist dann ein formaler Ansatz und Algorithmus zur Verifikation von Graphbedingungen als k-induktive Invarianten. Wir führen einen formalen Beweis, um die Korrektheit unseres Verfahrens nachzuweisen, und demonstrieren die Anwendbarkeit des Verfahrens an mehreren Beispielen, die mit einer prototypischen Implementierung verifiziert wurden.