..

Ronny S. Mans, Wil M. P. van der Aalst, Mathias Weske, Andreas Rogge-Solti

Repairing event logs using stochastic process models

ISBN: 978-3-86956-258-2
19 Seiten
Erscheinungsjahr 2013

Reihe: Technische Berichte des Hasso-Plattner-Instituts für Softwaresystemtechnik an der Universität Potsdam , 78

0,00 

Unternehmen optimieren ihre Geschäftsprozesse laufend um im kompetitiven Umfeld zu bestehen. Das Ziel von Process Mining ist es, bedeutende Erkenntnisse aus prozessrelevanten Daten zu extrahieren. In den letzten Jahren sorgte Process Mining bei Experten, Werkzeugherstellern und Forschern zunehmend für Aufsehen. Traditionell wird dabei angenommen, dass Ereignisprotokolle die tatsächliche Ist-Situation widerspiegeln. Dies ist jedoch nicht unbedingt der Fall, wenn prozessrelevante Ereignisse manuell erfasst werden. Ein Beispiel hierfür findet sich im Krankenhaus, in dem das Personal Behandlungen meist manuell dokumentiert. Vergessene oder fehlerhafte Einträge in Ereignisprotokollen sind in solchen Fällen nicht auszuschließen. In diesem technischen Bericht wird eine Methode vorgestellt, die das Wissen aus Prozessmodellen und historischen Daten nutzt um fehlende Einträge in Ereignisprotokollen zu reparieren. Somit wird die Analyse unvollständiger Ereignisprotokolle erleichtert. Die Reparatur erfolgt mit einer Kombination aus stochastischen Petri Netzen, Alignments und Bayes’schen Netzen. Die Ergebnisse werden mit synthetischen Daten und echten Daten eines holländischen Krankenhauses evaluiert.

Unternehmen optimieren ihre Geschäftsprozesse laufend um im kompetitiven Umfeld zu bestehen. Das Ziel von Process Mining ist es, bedeutende Erkenntnisse aus prozessrelevanten Daten zu extrahieren. In den letzten Jahren sorgte Process Mining bei Experten, Werkzeugherstellern und Forschern zunehmend für Aufsehen. Traditionell wird dabei angenommen, dass Ereignisprotokolle die tatsächliche Ist-Situation widerspiegeln. Dies ist jedoch nicht unbedingt der Fall, wenn prozessrelevante Ereignisse manuell erfasst werden. Ein Beispiel hierfür findet sich im Krankenhaus, in dem das Personal Behandlungen meist manuell dokumentiert. Vergessene oder fehlerhafte Einträge in Ereignisprotokollen sind in solchen Fällen nicht auszuschließen. In diesem technischen Bericht wird eine Methode vorgestellt, die das Wissen aus Prozessmodellen und historischen Daten nutzt um fehlende Einträge in Ereignisprotokollen zu reparieren. Somit wird die Analyse unvollständiger Ereignisprotokolle erleichtert. Die Reparatur erfolgt mit einer Kombination aus stochastischen Petri Netzen, Alignments und Bayes’schen Netzen. Die Ergebnisse werden mit synthetischen Daten und echten Daten eines holländischen Krankenhauses evaluiert.