Stephan Gutschow

Zu cervicalen Distorsionsverletzungen und deren Auswirkungen auf posturographische Schwankungsmuster

ISBN: 978-3-940793-53-9
230 pages
Release year 2008

8,00 

Introduction & Problem definition:
Disorders after acceleration injuries of the cervical spine can often be classified and diagnosed only inadequately. But an explicit diagnosis is necessary as a basis for an adequate therapy as well as for possibly arising demands pursuant to insurance law. The development of suitable diagnosis methods is in the interest of patients as well as the cost units. Apart from disorders of the soft tissues there are almost always impairments of the function of the neck musculature. Particularly the sensory function of the cervical spine musculature, which participates in the regulation of the equilibrium, is disturbed by that. As a result in can be assumed that the postural control is also disturbed. Therefore the aim of this study was to examine the possibly disturbed postural motor balance after a whiplash injury of the cervical spine with the help of apparatus-supported methods to be able to unambigiously diagnose.
Methods:
postural measuring system based on the forcemoment sensortechnique was used to record the postural balance regulation of 478 test persons and 85 patients which had suffered a whiplash injury. Data analysis was accomplished by linear as well as by nonlinear time series methods in order to characterise the balance regulation in an optimal way. Thus it can be determined whether there can be classified specific differences in the plantar pressure distribution covering patients with a whiplash injury and the test persons of the control group.
Results:
The best classification could be achieved by parameters which describe the variation of the postural balance regulation in phases in which the differences of the amplitudes of the plantar pressure distribution were relatively small. The analyses showed significant differences in the postural motor balance between the group of patients with whiplash injuries and the control group. The most significant differences (highest discriminate rates) could be observed by measurements in both-legged position with closed eyes.
Discussion:
Although the results achieved support the hypothesis mentioned above, is must be conceded that the postural motor balance showed a high individual variation in all positions of measurement. Therefore no universal variation model could be classified for the entirety of either group. This way an individual forecast of the group membership is impossible. As a result the measurement technology being used and the nonlinear time series analyses can contribute to the gain of knowledge and to the description of the regulation of postural control after whiplash injury. But at present they cannot contribute to an explicit determination of a whiplash injury for a particular case.
Introduction & Problem definition:
Disorders after acceleration injuries of the cervical spine can often be classified and diagnosed only inadequately. But an explicit diagnosis is necessary as a basis for an adequate therapy as well as for possibly arising demands pursuant to insurance law. The development of suitable diagnosis methods is in the interest of patients as well as the cost units. Apart from disorders of the soft tissues there are almost always impairments of the function of the neck musculature. Particularly the sensory function of the cervical spine musculature, which participates in the regulation of the equilibrium, is disturbed by that. As a result in can be assumed that the postural control is also disturbed. Therefore the aim of this study was to examine the possibly disturbed postural motor balance after a whiplash injury of the cervical spine with the help of apparatus-supported methods to be able to unambigiously diagnose.
Methods:
postural measuring system based on the forcemoment sensortechnique was used to record the postural balance regulation of 478 test persons and 85 patients which had suffered a whiplash injury. Data analysis was accomplished by linear as well as by nonlinear time series methods in order to characterise the balance regulation in an optimal way. Thus it can be determined whether there can be classified specific differences in the plantar pressure distribution covering patients with a whiplash injury and the test persons of the control group.
Results:
The best classification could be achieved by parameters which describe the variation of the postural balance regulation in phases in which the differences of the amplitudes of the plantar pressure distribution were relatively small. The analyses showed significant differences in the postural motor balance between the group of patients with whiplash injuries and the control group. The most significant differences (highest discriminate rates) could be observed by measurements in both-legged position with closed eyes.
Discussion:
Although the results achieved support the hypothesis mentioned above, is must be conceded that the postural motor balance showed a high individual variation in all positions of measurement. Therefore no universal variation model could be classified for the entirety of either group. This way an individual forecast of the group membership is impossible. As a result the measurement technology being used and the nonlinear time series analyses can contribute to the gain of knowledge and to the description of the regulation of postural control after whiplash injury. But at present they cannot contribute to an explicit determination of a whiplash injury for a particular case.